ACTEX EXAM P STUDY MANUAL - March 2019 Edition

Errata List, by S. Broverman Updated Feb 18/20

Oct 1/19 Page 19, give more comment on improper integral from -inf to inf
Feb 18/20 Page 210, 2 lines from bottom, probability is missing]
May 22/20 Page 494, \#18, in answers B,C,D and E, y should be λ
May 22/20 Page 501, \#18 solution, e^{-y} should be $e^{-\lambda}$ in every occurrence
May 22/20 Page 512, \#4 solution, final line should be Then $P(S<4)=1 \times 0.85+1 \times 0.15+0.88 \times 0.05=0.994$. Answer: D

May 22/20 Page 518, \#24 solution is incorrect. The correct solution is the following.
24. Let X_{A} be the number of sales for manufacturer A , and X_{B} for B , and $X_{C D}$ for manufacturers C and D combined. X_{A}, X_{B} and $X_{C D}$ have a multinominal distribution with
$n=10$ and $p_{A}=0.10, p_{B}=0.15, p_{C D}=0.75$
We wish to find the probability $P\left[\left(X_{A} \geq 2\right) \cap\left(X_{B} \geq 2\right)\right]=1-P\left[\left(X_{A} \leq 1\right) \cup\left(X_{B} \leq 1\right)\right]$.
$P\left[\left(X_{A} \leq 1\right) \cup\left(X_{B} \leq 1\right)\right]=P\left(X_{A} \leq 1\right)+P\left(X_{B} \leq 1\right)-P\left[\left(X_{A} \leq 1\right) \cap\left(X_{B} \leq 1\right)\right]$.
$P\left(X_{A} \leq 1\right)=P\left(X_{A}=0\right)+P\left(X_{A}=1\right)=(.9)^{10}+10(.9)^{9}(.1)=0.7361$.
$P\left(X_{B} \leq 1\right)=P\left(X_{B}=0\right)+P\left(X_{B}=1\right)=(.85)^{10}+10(.85)^{9}(.15)=0.5443$.
The sales numbers that result in the event $\left(X_{A} \leq 1\right) \cap\left(X_{B} \leq 1\right)$ are as follows:
Sales

X_{A}	0	1	0	1
X_{B}	0	0	1	1
$X_{C D}$	10	9	9	8

According to the multinomial probability function,
$P\left[\left(X_{A}=x_{A}\right) \cap\left(X_{B}=x_{B}\right) \cap\left(X_{C D}=x_{C D}\right)\right]=\frac{10!}{x_{A}!\times x_{B}!\times x_{C D}!} \times p_{A}^{x_{A}} \times p_{B}^{x_{B}} \times p_{C D}^{x_{C D}}$
The probabilities of the combinations above are

$$
\begin{aligned}
& P\left[\left(X_{A}=0\right) \cap\left(X_{B}=0\right) \cap\left(X_{C D}=10\right)\right] \\
& =\frac{10!}{0!\times 0 \times 10!} \times(0.1)^{0} \times(0.15)^{0} \times(0.75)^{10}=0.0563 .
\end{aligned}
$$

In a similar way, we get $P\left[\left(X_{A}=1\right) \cap\left(X_{B}=0\right) \cap\left(X_{C D}=9\right)\right]=0.0751$,
$P\left[\left(X_{A}=0\right) \cap\left(X_{B}=1\right) \cap\left(X_{C D}=9\right)\right]=0.1126$, and
$P\left[\left(X_{A}=1\right) \cap\left(X_{B}=1\right) \cap\left(X_{C D}=8\right)\right]=0.1352$.
Then, $P\left[\left(X_{A} \leq 1\right) \cap\left(X_{B} \leq 1\right)\right]=0.0563+0.0751+0.1126+0.1352=0.3792$,
and $P\left[\left(X_{A} \leq 1\right) \cup\left(X_{B} \leq 1\right)\right]=0.7361+0.5443-0.3792=.9012$,
and the probability that no manufacturer gets dropped is $1-0.9012=0.0988$. Answer: A

May 22/20 Page 520, \#29 solution is incorrect.
The value of -450 on the $6^{\text {th }}$ line from the bottom should be -225 . This changes the bottom line of the solution to be
The total expected insurance payment is $12,500 \times .09-225+738.99=1,639$ Answer : E

